

 Navigation

 	
 index

 	ckon 0.3 documentation

ckon documentation

Introduction

ckon is a C++ program/tool which automatically takes care of compilation,
dictionary generation and linking of programs and libraries developed for data
analyses within the CERN ROOT [http://root.cern.ch] analysis framework. This includes parsing
include headers to figure out which libraries the main programs need to be
linked to. It uses automake/autoconf [http://www.gnu.org/software/autoconf/] to be platform independent and GNU
install compliant. In addition, m4 macros [http://www.gnu.org/software/autoconf-archive/The-Macros.html#The-Macros] are automatically downloaded and
the according compiler flags included based on a list of boost [http://www.boost.org/] libraries
provided in the config file. For the purpose of YAML database usage, a m4
macro can be downloaded during setup to link against the yaml-cpp [https://code.google.com/p/yaml-cpp/] library.

	Authors and Contributors

	
Patrick Huck (@tschaume)

invaluable contributions: Hiroshi Masui

Reference Talk [https://speakerdeck.com/tschaume/organize-root-analyses-with-autoconf] (LBNL, 2011/11/14)

	License & Project Homepage

	
ckon is published under MIT License [http://opensource.org/licenses/MIT].

Find the project page at http://tschaume.github.com/ckon

	Software Requirements

	
	m4/1.4.6

	autoconf/2.68

	automake/1.11.4

	libtool/2.4

	boost/1.50

	libcurl/7.27.0

Installation

	clone ckon via git clone git@github.com:tschaume/ckon.git

	install via cd ckon; ./installCkon <install-path>
	replace <install-path> with an install path in your $PATH

	see ./installCkon -h for help

	see ./configure --help for configure options in case something goes
wrong

Usage

Generic Options

Shown below are the generic command line options which can be given to ckon.:

Generic Options:
 -h [--help] show this help
 -v [--verbose] verbose output
 -j arg call make w/ -j <#cores>
 --ckon_cmd arg setup | clean | install

The long option --ckon_cmd is implemented as optional positional option
to run the setup, clean all compilation products (i.e. make clean) and
globally install libraries and programs (i.e. make install):

	ckon setup: run the setup

	ckon: compile

	ckon clean: make clean

	ckon install: make install

	ckon dry: only generates Makefiles, no compilation

Setup

ckon setup generates the files configure.ac and .autom4te.cfg (both
autoconf specific, no need for modifications) as well as ckon.cfg. Modify
the latter to resemble your directory structure and linker options. Simply
remove the lines/options you don’t need, thus using the default options.

Configuration

The following options can be set on the command line or preferably in
ckon.cfg. Optionally, a file named ckonignore with a list of strings to
be ignored during the build process, can be created in the working directory.
Wildcards are not supported (yet). Instead each path currently processed by
ckon will be checked against the strings/lines in ckonignore. If one of
the strings in ckonignore is contained in the path, the path is
ignored/skipped.:

Configuration:
 -s [--suffix] arg add suffix + in LinkDef.h (bool)
 -y [--yaml] arg use yaml
 --ckon.src_dir arg source dir
 --ckon.exclSuffix arg no + suffix
 --ckon.NoRootCint arg no dictionary
 --ckon.prog_subdir arg progs subdir
 --ckon.build_dir arg build dir
 --ckon.install_dir arg install dir
 --ckon.cppflags arg add CPPFLAGS
 --ckon.boost arg boost libraries

In addition, unregistered options of the form
ldadd.prog_name are allowed to use for adding
LDFLAGS to the linker of specific programs. The
given string/value is added verbatim in LDADD.
Unregistered options are only allowed in ckon.cfg

The unregistered option group ldadd is allowed. For instance, link the
programs genCharmContrib and dedxCut versus Pythia6 [http://home.thep.lu.se/~torbjorn/Pythia.html] and RooFit [http://root.cern.ch/drupal/content/roofit],
respectively, by adding the following to ckon.cfg.:

[ldadd]
genCharmContrib=-lPhysics -lEG -lEGPythia6 # link pythia
dedxCut=-lRooFit -lRooFitCore -lMinuit # link roofit

ckon.boost is set during ckon setup to use and link against specific boost
libraries. Try not to run rootcint (ckon.NoRootCint) on the library if
compilation fails.

Note

ckon version 0.4 now allows for the automatic download of a yaml.m4
macro during ckon setup to link against the yaml-cpp [https://code.google.com/p/yaml-cpp/] library. Please
submit an issue [https://github.com/tschaume/ckon/issues] if the macro doesn’t find the library after you installed
it. This added functionality shouldn’t break anything if you choose not to use
YAML during ckon setup.

Warning

For the recursive header scan to work, make sure that all include directives
for C++ and ROOT headers are enclosed in <...>! Only your local/private
headers should be enclosed in "...". Otherwise ckon will fail
reporting a basic_string::_S_create error.

Typical Directory Structure

Put header and source files for each library into a separate folder in
ckon.src_dir. Running ckon should automagically take the right action
for the current status of your build directory (no need to run ckon clean
before re-compilation). Makefiles and LinkDef’s are generated automatically
based on the contents and timestamps in the ckon.src_dir directory.

A typical directory structure could look as follows - using the current
defaults for illustration purposes.:

StRoot/
 ElectronPid/
 BetaPanels.cxx
 BetaPanels.h
 PureSampleAnalysis.cxx
 PureSampleAnalysis.h
 SigmaElFitsMaker.cxx
 SigmaElFitsMaker.h
 SigmaElFitsPlotter.cxx
 SigmaElFitsPlotter.h
 SigmaElFitsUtils.cxx
 SigmaElFitsUtils.h
 programs/
 README
 beta3sig.cc
 dedxCut.cc
 nsigparamsGP.cc
 pureSamp.cc
 StBadRdosDb/
 StBadRdosDb.cxx
 StBadRdosDb.h
 database/
 dbfiles
 genAll.sh
 genBadRdosDb.pl
 macros/
 testStBadRdosDb.C
 YamlCfgReader/
 YamlCfgReader.cxx
 YamlCfgReader.h
 config.yml
...

Index and Search

	Index

	Module Index

	Search Page

 Copyright 2013, Patrick Huck.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	ckon 0.3 documentation

Index

 Copyright 2013, Patrick Huck.
 Created using Sphinx 1.1.3.

 _static/plus.png

_static/down.png

_static/comment.png

_static/minus.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/file.png

search.html

 Navigation

 		
 index

 		ckon 0.3 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, Patrick Huck.
 Created using Sphinx 1.1.3.

_static/comment-close.png

_static/up-pressed.png

_static/up.png

_static/down-pressed.png

